
ABSTRACT

This short paper is in response to one that appeared in this

journal a few years ago [2]. The article was a comment on a previous

paper [i], which presented the transformation equations between the

standard two-port parameters. The equations were stated to be valid

for complex terminations; which are useful when S-parameters are

treated. The authors in [2] made some incorrect conclusions concerning

the concept of " generalized scattering parameters" , and this paper

seeks to clarify the somewhat confusing area of generalized scattering

parameters.



On the Interpretation of Scattering Parameters

In 1994, Frickey [I] presented equations for the conversions

between two-port parameters. The paper's contribution was that the new

equations were valid for complex source and load impedances. Prior to

this, all the published conversion equations (in explicit form) were

restricted to real terminating impedances. Later a short paper by

Marks and Williams [2] appeared, which discussed both the measurement

and calculation of S-parameters. They claimed the conversions stated

in [i] could lead to incorrect results. The objective of this note is

to show that the equations in [I] are correct and useful, and that the

objections in [2] are due to a misconception concerning S-parameters.

To indicate the causes for the differences in opinion between [I] and

[2], a brief review of S-parameters is in order.

The voltage and current on a lossless TEM transmission line (TL)

with real characteristic impedance (Z0), are expressed as

V(Z ) = Vie -iÈz + V,e i_x = V ÷ + V-

z(z)= - r ÷r
Z0

The voltage reflection coefficient at the load is

(la)

(lb)

V- =-ZoI- (ab)

The basic equations require

V ÷ = Zo I÷ (3a)

<. v-(z=o) z_-Zo----- -- (2)

v +(x = o) z_ + Zo



See Figure 1 for the notation. Notice that the current is referenced

positive to the right (for both the forward i ÷ and reflected i-

parts). The S-parameters may be developed by connecting a two-port

between two TLs with the same real characteristic impedance Z 0 . When

one line is excited by a generator of internal impedance Z0, and the

other terminated in Z0, the incident and reflected waves on the driven

line yield szz. The exiting wave on the terminated line is used with

the incident one on the generator side to develop s n. Placing the

generator on the other side provides for the determination of s22 and

s n. This is the way the scattering parameters are determined using a

network analyzer. Figure 2 shows a general two-port with waves in both

directions on the connecting TLs. The S-parameters may be expressed as

[3], [4]

_1- = 3'1l_l + + sI2V2 + (4a)

= s ,V,++ (4b)

More involved (but equivalent) definitions follow; and in many of them,

total voltages and currents at a given reference plane are used. The

reason for this is that the incident and reflected waves are easily

measured, but most circuit theory deals with total quantities. The

total voltage and current at either reference port is

V k = V; + V,- (5a)

I, = _÷ Vk- k = 1,2 (5b)

Zo Zo

Rearrange these to obtain
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V, + _ l(Vk q- ZoI k) (6a)

_- = +(v, -ZoL) (_b)

Which expresses the incident and reflected variables in terms of the

total quantities. Now recall that the average power in an incident

traveling wave (_I + or /2+) is

2Z° (7)

Where peak quantities are used. With this observation we can define

incident and reflected complex amplitudes as

V/
k

a k _ (8a)

This choice is made so that

aa*IV+I2
2 2zo

2bb* V-

2 2Z o

are equal to the incident and reflected average real power

respectively. Then from eqns. (6a) and (6b)

aj --

bj =

Vj + ZoI j

Vj - ZoI j

(8c)

(sd)

(9a)

(9b)



Then the S-parameters are defined by

b_ = Slial + Si2a 2 (10a)

b 2 = s21al + s22_2 (lOb)

Which is equivalent to the first definition in eq. (4). This is the

most eften used definition and will be called the " standard" . See

Figure 2 for details. If the transmission lines connected to a general

two-port have different (real) characteristic impedances, say

fmand/02, then eq. (9) is modified accordingly, see Figure 3. In this

case the resulting S-parameters are sometimes called " generalized

scattering parameters," see [4], p. 205. For this situation s n and s22

are the same as the standard, but the transfer terms s12 and s n differ

from the standards by

= _ s,2 (standard) (lla)
sl2 _ Zol

!

__I--.-----

Z°/_o°2_ (standard) (11b)
S21 _ S21

Recall that at a reflection plane in TL theory

F'=--I- = V-=_F _ (12)
I ÷ W

Which says the current reflection coefficient is the negative of the

voltage reflection coefficient. This concludes the transmission line

portion of the S-parameter development.

Now we give the development of " scattering parameters" based on

strictly lumped circuits [5] - [i0] Consider a source and arbitrary

load as given in Figure 4. The source with complex internal impedance
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Z0is connected successively to a matched load Z 0 *and an arbitrary

complex load. When connected to the load Z 0 * we have

E- K.Zo*
Zo + Zo, (13a)

I, = E
Zo + Zo , (iSb)

Even though the circuit is lumped, we call _and I i incident voltage

and current. The rationale is that in the matched case, all the power

the generator can develop is absorbed in the load. Therefore no

reflection of voltage and current exists. For the general load ZLwe

have

V- EZ,.
= E + g_ (14a)

Z o + Z t

I= E "
= I i -- Ir (14b)

Z o + Z t

and we define reflected quantities V r and It; since for the general

load, maximum power is not absorbed, so some must be reflected back

into the generator. These terms are arbitrarily introduced to give a

sense of motivation for " the reader who is already familiar with TL

theory." Carlin and Giordano [5] explain this on p. 226 of their

text. Manipulating equations (13) and (14) yield

lz +Zo)'
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v,=Z--oVa, 3 (15b)

So

(15c)

and if Z 0 is real, S w S != ; which is never the case in TL theory (see

eq. (12)). From eq. (13) we can show

V, =Zo*I / (16a)

a= +I (17a)

(17b)

in [5], eq. (4.3), p. 225.

and with eq. (14) we find

= Zol , (16b)

Notice eq. (16) relates incident and reflected quantities associated

with a lumped network under different loading conditions (i.e., either

Z 0 * or ZL). They are similar to the incident and reflected

quantities for a transmission line (eqns. (3a) and (3b)). When the

source impedance is pure real, equations (3b) and (16b) always differ

by a negative sign. The sign of the reflected current in eq. (14b) is

discussed in [6] p. 573.

With this background we now introduce the scattering variables as



Where " a" is the incident voltage or current, " b" is the reflected

current or voltage. These are very similar t9 eq. (9), but differ in

two ways. Firstly, here rms quantities are used, and secondly, the

normalizing constant _ is an arbitrarily chosen pure real positive

number. It is usually chosen to be equal to the real source imped@nce,

out of which the network is to operate. When the normalizing constant

is complex, a modification to the above is needed. See [5], sec. 4.13,

or [6], sec. 8.5, for a complete discussion. To retain many of the

desirable properties of the _ standard" scattering matrix when real

normalization is used, the definitions for complex normalization turn

out to be

(18a)

These are equations (4.230a,b) in [5], ( the equation given for b, has

a typographical sign error ). These equations are also those in [6];

eqns. (91a,b), p. 608. Actually one can define either voltage 8 v or

current S ! scattering parameters, and it turns out the above is that

for currents. This happens to be the best choice, since this set

reduces to the " standard" when the terminations become pure real.

A further generalization for complex normalization is referred to

as the _ power wave" approach [ii], [12]. The power waves are defined

by



V_ + Z,I i

a, 2_ (19a)

b, - V, - Z, * I,
- 2_ (19b)

and a power wave reflection eoefficient is defined by

S = b-c = ZL - Z, *
a_ Z L + Z_ (20)

Which reduces to a TL voltage reflection coefficient when Z, is real

and positive. Notice the real part of f i may be negative in the power

wave realm. In all cases before, however, the real part of Zj was

always positive. Kurokawa [11], [12], clearly states the difference

between power waves and the voltage traveling waves of transmission

lines.

All S-parameters depend on both the two-port in question, and the

termination impedances upon which they are defined. This is unlike the

[Z] or [Y] parameters which depend only on the two-port. A practical

result of this fact is as follows. Given that the S-parameters are

determined by measurement in a 50 ohm system, how does one modify these

for analysis purposes where the source now has a complex internal

impedance, and the load is also complex? Perhaps the first (easily

accessible) published method was that of Kurokawa [11], where he showed

how to transform S-parameters from one complex normalization Z i to

l

another complex normalization Z i The transformation was given as
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[F] and [ A ] are diagonal matrices with elements given by F/ and

! *Ir_r_

(1- r_*)%/[_1/-<]

where

F

z_-z_
r1= ,

Z, +Zi*

Bodway [13] also published the transformations for complex

normalization, and his formulas are in a more useful form.

'_ A, * [(1-ras22)(s,,-r, *)+r2s,2s2, ] _ A, * N

s,, - T [(l_r)s,,)O_rasn)_rlr_sz2s2,]_ A, D

S12 =
A, D

, A 2 *
$22 --

A2

(21b)

They are:

(22a)

(22b)

S2! -- (22c)
A 2 D

[(1- rts,,)(sn-r 2 *)+ rls,2s2, ]
(22d)

D

0- '1
A,= _i_--r.]-=(1-[ r_ [2)_ (22e)

I

-_ _22f)_= ,

_ +Zi*

Later, Carson [8] gave the details of the development of eq. (21) in

his Chapter 7 and Appendix A; however, he restricted the original set

of parameters to be with respect to a real termination. Gonzalez [14]

has also given the equations with the same restriction.

Now we show how complex normalization may be introduced into the

traveling waves of transmission lines. From eq. (7) we find
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NOW define

Then we can assign

PAy =-}Re{V/ (I; ) *}

-l!O r+(I+),+Zo • •

- ,,-[Zo+Zo*](rXr)*

+[Z+Zo*)'(:")* (23a)

a = I Z° +ZgI+2 (23b)

÷ Z ÷Notice we have assigned V k - oIk which is in agreement with eq. (3a).

Now eq. (23b) is eq. (72) of [i]. Now for a reflected wave we find

Now assign

PAy =IRe{V[(I:) *}

=_{- Zo:; (Ii ) *-Zo *U; ) * (:; )}

= -¼[Z o + Z o "1(I,_ XI;)*

(24a)

bk=l/z° +zg2 I_ (24b)

Which is eq. (7b) of [I]. With a and b so defined, we find

Vj + Zojlj

a, = [2(Zoj + Zo, ,)]_ (25a)

Vj - Zoj * Ij

bj = [2(Zo, + Zos ,)]g (25b)

(see [I], eqns. (12) and (13)). They are also eqns. (3) and (4) in

[7]. Observe only two difficulties appear in equations (23) through

(25). The negative sign in eq. (242) for the power is due to the TL

requirement that V-=-Zol- _ and secondly the V] and /] in eq. (25)

I0



are rms, whereas those in eq. (23) (Vk_[ ,) are peak values. Since the

S-parameters are ratios, the peak vs. rms condition is not an issue.

The negative sign may be dropped, since there is no direction in a

lumped circuit. The sign appears in TL equations due to the variation

of the wave with distance, see [15], p. 44. Equation (25) reduces

exactly to eq. (9) when f 0 is real; which demonstrates the validity of

the assignments for " a" and " b"

Returning to eq. (25), we may define the generalized scattering

parameters for complex normalization; which was done by Frickey [I].

To verify the consistency between the equations given so far, we will

analyze a simple network. Consider the circuit in Figure 5a;

straightforward calculations show

Z11= 3 - j Z22 = 7 + j ZI2 = Z2, = 3 + j

s,, =.168/- 59.4" s22 =.375/- 27.8" (2G)

s,2 = s2, = .357/33.1"

If we calculate the Z-parameters from the above S-parameters based on

the complex normalization, and use the equations in [i]

ZI I _ (201" +Sll/Ol IX1 - s22)-1- Sl2S2tZol (27a)

D

2 s,2
Z12 -- (27b)

D

2s2,_
Z21 -- (27C)

D

Z22 = (1- s't)(Z°2 * +s22Z°2)+ s'2s2'Z°2 [27d)
D

D=(1-s,,)(1-s22)-s,2s2,
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We indeed obtain the Z-parameters of the network, which are independent

of the terminations. If we remove the complex terminations, i.e. let

f0! =2_ and f02 =3_, (see Figure 5b) ; then the S-parameters become

(again by circuit analysis using eqns. (9) and (i0))

s,! =.345/- 64.3*

s!2 = s2, =.349/32.8 ° (28)

s22 = .314/- 6.7"

Which we see are different from those determined earlier. Using eq.

(27) again, we recover the Z-parameters as before. Notice the S-

parameters depend on both the two-port and the reference terminations;

whereas the

Z-parameters depend only on the tworport. Now assume a second set of

complex terminations as given in Figure 5c. The S-parameters are (by

circuit analysis)

' ' .765/-7.77*sll =.726/-26.2* s22 =
f t

s,2 =s2! =.186/68.2"
(29)

If we use the equations of Bodway [13], and start with the first IS]

set defined on their complex normalization (circuit in part a), we

should be able to develop those just given above IS'], which are defined

I

with complex normalization f i . Performing the calculations in eq. (22)

shows that this is indeed the case.

We now address [2]. Their eq. (2) is

f. = Z L - Z,,,

Z L + Z,, I
(30)
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Which is the current reflection coefficient, eq. (15a), or the power

wave reflection coefficient, eq. (20). They incurred errors by

assuming F is actually the reflection coefficient determined by the

network analyzer. The instrument uses real (Z 0 =50_) reference

impedances and measures V-/X + =(Z L -Zo)/(Z L +Zo). The s-parameters

it measures are for 50_ references. If the set is to be transformed

into one for complex normalization, then eqns. (21) and (22) are

applicable. Recall that the S-parameters (and all other two-port sets)

are used in lumped circuit analysis, even though IS] may be developed

(and measured) using traveling wave procedures. The fact that Frickey

reported his equations were verified by using both PSPICE and Microwave

Harmonica, means the routines are also without error for this type of

calculation.

The main points to make are that the " generalized scattering

parameters" (where generalized means complex normalization) reduce to

the measured " microwave" scattering parameters when the normalization

Z 0 is pure real. In the microwave case, Z 0 is the real characteristic

impedance of the TL. For the generalized case, Z 0 is an arbitrary

constant. Slight differences in definition exist for the variables

a" and " b" under real or complex f 0 cases. The HP application note

#95 [13] clearly explains this on pages i-3.

From the equations developed earlier, we may summarize as

follows. The word generalized may mean complex terminations or just

different (real) terminations at the input and output ports. We have

real traveling waves on TLs which spawn the " standard set" . We have
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incident and reflected variables V_,I_,V,I in lumped circuit theory,

from which the generalized case emerges. There are also " power

waves" , which are close to the generalized case ( difference is that

Re{f i} may be negative for power waves). Also Z 0 is called either the

characteristic, or reference, impedance. In TL theory the variables are

related by

V ÷ = ZoI _ V- =-ZoI- F _ = -F'
(31)

V=V÷ +V - i=i++I -

and in many cases peak values are used. The characteristic impedance

Z0 is real, and is coupled to V, I, and the power flow along the line.

A complex characteristic impedance Z0 = R +iX is inherently lossy,

and is not of practical use; (omit the special _ distortionless line"

case). The complex normalization case has the following group of

equations:

V_=Zo* _ V, = ZoI r Fv = Zo F1

Zo * (32)

V=_ +V I=I_ -I r

here Z 0 is arbitrary, and rms values are used. The variables _ a" and

" b" are incident and reflected current variables. A reflection factor

has the form

Z L - Z o *
: (33)

Z L + Z o

Which is the same as the power wave reflection factor.

There exist more definitions of " scattering variables" , see for

example Ishii [16]. There he relates incident and reflected electric
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field intensities (p.120). Woods [17], [18] extends the case to actual

transmission lines with complex f 0. See references [15], pg. 202, and

[19], [20] for discussions of power flow on lossy lines with complex

Z 0 , and their analysis on the Smith Chart. The remaining references

augment the presentation here.
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